Phase-averaged equation for water waves

Author:

Gramstad Odin,Stiassnie Michael

Abstract

AbstractWe investigate phase-averaged equations describing the spectral evolution of dispersive water waves subject to weakly nonlinear quartet interactions. In contrast to Hasselmann’s kinetic equation, we include the effects of near-resonant quartet interaction, leading to spectral evolution on the ‘fast’ $O({\epsilon }^{- 2} )$ time scale, where $\epsilon $ is the wave steepness. Such a phase-averaged equation was proposed by Annenkov & Shrira (J. Fluid Mech., vol. 561, 2006b, pp. 181–207). In this paper we rederive their equation taking some additional higher-order effects related to the Stokes correction of the frequencies into account. We also derive invariants of motion for the phase-averaged equation. A numerical solver for the phase-averaged equation is developed and successfully tested with respect to convergence and conservation of invariants. Numerical simulations of one- and two-dimensional spectral evolution are performed. It is shown that the phase-averaged equation describes the ‘fast’ evolution of a spectrum on the $O({\epsilon }^{- 2} )$ time scale well, in good agreement with Monte-Carlo simulations using the Zakharov equation and in qualitative agreement with known features of one- and two-dimensional spectral evolution. We suggest that the phase-averaged equation may be a suitable replacement for the kinetic equation during the initial part of the evolution of a wave field, and in situations where ‘fast’ field evolution takes place.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. History of freak/rogue wave research;Science and Engineering of Freak Waves;2024

2. Apparent singularities of the finite-depth Zakharov equation;Journal of Fluid Mechanics;2023-10-04

3. Freak waves caused by reflection;Coastal Engineering;2021-12

4. On two approaches to the third-order solution of surface gravity waves;Physics of Fluids;2021-09

5. Rogue waves in the sea: observations, physics and mathematics;Physics-Uspekhi;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3