Lattice-Boltzmann equations for describing segregation in non-ideal mixtures

Author:

Philippi Paulo C.,Mattila Keijo K.,Siebert Diogo N.,dos Santos Luís O. E.,Hegele Júnior Luiz A.,Surmas Rodrigo

Abstract

AbstractIn fluid mechanics, multicomponent fluid systems are generally treated either as homogeneous solutions or as completely immiscible parts of a multiphasic system. In immiscible systems, the main task in numerical simulations is to find the location of the interface evolving over time, driven by normal and tangential surface forces. The lattice-Boltzmann method (LBM), on the other hand, is based on a mesoscopic description of the multicomponent fluid systems, and appears to be a promising framework that can lead to realistic predictions of segregation in non-ideal mixtures of partially miscible fluids. In fact, the driving forces in segregation are of a molecular nature: there is competition between the intermolecular forces and the random thermal motion of the molecules. Since these microscopic mechanisms are not accessible from a macroscopic standpoint, the LBM can provide a bridge linking the microscopic and macroscopic domains. To this end, the first purpose of this article is to present the kinetic equations in their continuum forms for the description of the mixing and segregation processes in mixtures. This paper is limited to isothermal segregation; non-isothermal segregation was discussed by Philippi et al. (Phil. Trans. R. Soc., vol. 369, 2011, pp. 2292–2300). Discretization of the kinetic equations leads to evolution equations, written in LBM variables, directly amenable for numerical simulations. Here the dynamics of the kinetic model equations is demonstrated with numerical simulations of a spinodal decomposition problem with dissolution. Finally, some simplified versions of the kinetic equations suitable for immiscible flows are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation

2. Symmetric free-energy-based multicomponent lattice Boltzmann method

3. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation

4. Lattice Boltzmann model of immiscible fluids

5. Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité;Korteweg;Arch. Neer. Sci. Exactes Ser.,1901

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3