Statistically steady states of forced isotropic turbulence in thermal equilibrium and non-equilibrium

Author:

Donzis Diego A.,Maqui Agustin F.

Abstract

We investigate statistically steady states of turbulent flows when molecular degrees of freedom, in particular vibration, are taken into account. Unlike laminar flows initially in thermal non-equilibrium which asymptotically relax towards thermal equilibrium, turbulent flows present persistent departures from thermal equilibrium. This is due to fluctuations in temperature and other thermodynamic variables, which are known to increase with turbulent Mach number. Analytical results are compared to direct numerical simulations at a range of Reynolds and Mach numbers as well as molecular parameters such as relaxation times. Turbulent fluctuations are also shown to disrupt the distribution of energy between translational–rotational–vibrational modes even if thermal equilibrium is attained instantaneously relative to turbulence time scales, an effect that increases with characteristic relaxation times. Because of the nonlinear relation between temperature and vibrational energy in equilibrium, the fluctuation of the latter could be strongly positively skewed with long tails in its probability density function. This effect is stronger in flows with strong temperature fluctuations and when vibrational modes are partially excited. Because of the finite-time relaxation of vibration, departures from equilibrium result in very strong transfers of energy from the translational–rotational mode to the vibrational mode. A simple spectral model can explain the stronger departures from thermal equilibrium observed at the small scales. The spectral behaviour of the instantaneous vibrational energy can be described by classical phenomenology for passive scalars.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Theory of sound dispersion;Landau;Physik Z. Sowjetunion,1936

2. The structure of the temperature field in a turbulent flow;Obukhov;Izv. Akad. Nauk. SSSR,1949

3. Study of High–Reynolds Number Isotropic Turbulence by Direct Numerical Simulation

4. The Batchelor Spectrum for Mixing of Passive Scalars in Isotropic Turbulence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3