Numerical investigation of the flow over a model transonic turbine blade tip

Author:

Wheeler Andrew P. S.,Sandberg Richard D.

Abstract

Direct numerical simulations (DNS) are used to investigate the unsteady flow over a model turbine blade tip at engine-scale Reynolds and Mach numbers. The DNS are performed with an in-house multiblock structured compressible Navier–Stokes solver. The particular case of a transonic tip flow is studied since previous work has suggested that compressibility has an important effect on the turbulent nature of the separation bubble at the inlet to the tip–casing gap and subsequent flow reattachment. The flow is simulated over an idealized tip geometry where the tip gap is represented by a constant-area channel with a sharp inlet corner to represent the pressure side edge of the turbine blade. The effects of free-stream disturbances, cross-flow and the pressure side boundary layer on the tip flow aerodynamics and heat transfer are studied. For ‘clean’ inflow cases we find that even at engine-scale Reynolds numbers the tip flow is intermittent in nature, i.e. neither laminar nor fully turbulent. The breakdown to turbulence occurs through the development of spanwise streaks with wavelengths of approximately 15 %–20 % of the gap height. Multidimensional linear stability analysis confirms the two-dimensional base state to be most unstable with respect to spanwise wavelengths of 25 % of the gap height. The linear stability analysis also shows that the addition of cross-flows with 25 % of the streamwise gap exit velocity increases the stability of the tip flow. This is confirmed by the DNS, which also show that the turbulence production is significantly reduced in the separation bubble. For the case when free-stream disturbances are added to the inlet flow, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip–casing gap cause significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. The DNS results also suggest that the assumption of the Reynolds analogy and a constant recovery factor are not accurate, in particular in regions where the skin friction approaches zero while significant temperature gradients remain, such as in the vicinity of flow reattachment.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3