A model for confined vortex rings with elliptical-core vorticity distribution

Author:

Danaila Ionut,Kaplanski Felix,Sazhin Sergei S.

Abstract

We present a new model for an axisymmetric vortex ring confined in a tube. The model takes into account the elliptical (elongated) shape of the vortex ring core and thus extends our previous model (Danaila et al. J. Fluid Mech., vol. 774, 2015, pp. 267–297) derived for vortex rings with quasi-circular cores. The new model offers a more accurate description of the deformation of the vortex ring core, induced by the lateral wall, and a better approximation of the translational velocity of the vortex ring, compared with the previous model. The main ingredients of the model are the following: the description of the vorticity distribution in the vortex ring is based on the previous model of unconfined elliptical-core vortex rings (Kaplanski et al. Phys. Fluids, vol. 24, 2012, 033101); Brasseur’s approach (Brasseur, NASA Tech. Rep. JIAA TR-26, 1979) is then applied to derive a wall-induced correction for the Stokes streamfunction of the confined vortex ring flow. We derive closed formulae for the flow streamfunction and vorticity distributions. An asymptotic expression for the long-time evolution of the drift velocity of the vortex ring as a function of the ellipticity parameter is also derived. The predictions of the model are shown to be in agreement with direct numerical simulations of confined vortex rings generated by a piston–cylinder mechanism. The predictions of the model support the recently suggested heuristic relation (Krieg & Mohseni Trans. ASME J. Fluids Engng, vol. 135, 2013, 124501) between the energy and circulation of vortex rings with converging radial velocity. A new procedure for fitting experimental and numerical data with the predictions of the model is described. This opens the way for applying the model to realistic confined vortex rings in various applications including those in internal combustion engines.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collisions of vortex rings with hemispheres;Journal of Fluid Mechanics;2024-01-31

2. Spray Formation and Penetration;Droplets and Sprays: Simple Models of Complex Processes;2022

3. Targeted particle delivery via vortex ring reconnection;Physics of Fluids;2021-10

4. Formation Number of Vortex Rings;Vortex Ring Models;2021

5. Confined Vortex Rings;Vortex Ring Models;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3