Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma

Author:

Karlstrom LeifORCID,Dunham Eric M.

Abstract

Oscillations of magma in volcanic conduits are thought to be the source of certain seismic and infrasonic signals observed near active volcanoes. However, the multiphase and stratified nature of magma within the conduit complicates the calculation of resonant modes that is required to interpret observations. Here we present a linearized mathematical framework to describe small-amplitude oscillations and waves in a stably stratified column of two-phase magma (liquid melt and gas bubbles) with a traction-free upper surface (a lava lake). We explore the role of time-dependent mass exchange between the phases, depth-varying fluid properties and gravity on the modes of oscillation of inviscid magma within an axisymmetric, vertical conduit. Non-equilibrium phase exchange, which we refer to as bubble growth and resorption (BGR), is parameterized by introduction of a kinetic time scale quantifying mass exchange between the liquid and gas phases that evolves the mixture towards a state of thermodynamic equilibrium. Using a provably stable finite difference method, we solve the eigenvalue problem for the resonance frequencies, decay rates, and spatial structure of the conduit eigenmodes. The numerical method is then extended to time-domain simulations of waves excited by internal volumetric sources in the conduit or forces applied to the surface of the lava lake. We connect time-dependent wave propagation simulations to the modal analysis by identifying the primary modes that are excited by representative excitation processes. Waves propagating through bubbly magma are dispersive, and their behaviour is determined by three dimensionless parameters. One quantifies the importance of buoyancy and gravitational restoring forces relative to compressibility, the second quantifies differences between fluid properties (e.g. mixture compressibility) under equilibrium and non-equilibrium conditions, and the third compares the wave period to the BGR time scale. Pronounced depth variations in background fluid properties, such as the transition from liquid melt with dissolved volatiles at the high pressures at depth to bubbly magma above the gas exsolution depth, segment the conduit into distinct regions. The longest-period modes, which are expressed with the largest amplitudes for typical excitation processes, are most sensitive to the length of the bubbly region and properties of the bubbly magma within it. While the boundary condition at the bottom of the conduit determines whether the fundamental mode is affected by the total conduit length, modes localized above the exsolution depth are remarkably insensitive to the overall conduit length. Our analysis suggests that parameters affecting eruption style, such as total volatile content and kinetic time scales of BGR, along with excitation source characteristics, are imprinted on long-period seismic and infrasonic signals at active volcanoes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3