Measurements of passive scalar diffusion downstream of regular and fractal grids

Author:

Nedić J.,Tavoularis S.

Abstract

The diffusion of heat injected from a line source into turbulence generated by regular and fractal grids with the same solidity and inlet velocity was investigated experimentally with particular interest in the effects of grid geometry and relative location of the source on the width of the thermal plume and the mixing efficiency. These grids included one fractal square grid (FSG) and three regular square grids with mesh sizes that were comparable to the first (RG160), second (RG80) and fourth (RG18) iterations of the fractal grid. The heated line source was inserted on the centre plane of the grids, spanning the entire width of the wind tunnel at either of two downstream locations, an upstream location or a location nearly coincident with a grid. It was found that, in all cases examined, RG160 produced the strongest diffusion of the thermal plume and the highest level of scalar mixing. These observations were consistent with the evolution of the corresponding turbulent diffusivities, which, according to Taylor’s theory of diffusion, are the product of the transverse turbulence intensity and the integral length scale. We argue that to maximise scalar diffusion and mixing of a scalar released from a concentrated source inside a duct, one should prefer a regular grid over a fractal square grid; we also recommend the use of a grid with a mesh size roughly equal to half the height of the duct and placed at approximately one duct height upstream of the source.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3