Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone

Author:

Moyes Alexander J.,Paredes Pedro,Kocian Travis S.,Reed Helen L.

Abstract

The purpose of this paper is to provide secondary instability analysis of stationary crossflow vortices on a hypersonic yawed straight circular cone with a $7^{\circ }$ half-angle at $6^{\circ }$ angle of attack, free-stream Mach number 6 and unit Reynolds number $10.09\times 10^{6}~\text{m}^{-1}$. At an angle of attack, a three-dimensional boundary layer is developed between the windward and leeward symmetry planes. Under the action of azimuthal pressure gradients, the flow near the surface is deflected more than the flow near the edge of the boundary layer. This results in an inflectional velocity profile that can sustain the growth of crossflow vortices. The stationary crossflow instability is computed by means of the nonlinear parabolized stability equations, including a methodology to predict the stationary-crossflow marching path and variation of the spanwise number of waves in the marching direction solely from the basic state. Secondary instability analysis is performed using spatial BiGlobal equations based on two-dimensional partial differential equations. The secondary instabilities are calculated at different axial locations along two crossflow vortex trajectories selected to complement experiments conducted in the Mach 6 Quiet Tunnel at Texas A&M University and in the Boeing/AFOSR Mach 6 Quiet Tunnel at Purdue University. The secondary instability analysis captures various instability modes. Similar to observations in the low-speed regime for an infinite swept wing, secondary shear-layer instabilities are amplified as a consequence of the three-dimensional shear layer formed by crossflow vortices. Also, low-frequency travelling crossflow and high-frequency second modes coexist with the shear-layer instabilities. These results are shown to be in good agreement with the two sets of hypersonic yawed cone experiments (one with natural surface roughness and one with artificial discrete roughness) and compare well with experimental measurements of an incompressible swept wing.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3