Reynolds-number dependence of the near-wall flow over irregular rough surfaces

Author:

Busse A.,Thakkar M.,Sandham N. D.

Abstract

The Reynolds-number dependence of turbulent channel flow over two irregular rough surfaces, based on scans of a graphite and a grit-blasted surface, is studied by direct numerical simulation. The aim is to characterise the changes in the flow in the immediate vicinity of and within the rough surfaces, an area of the flow where it is difficult to obtain experimental measurements. The average roughness heights and spatial correlation of the roughness features of the two surfaces are similar, but the two surfaces have a significant difference in the skewness of their height distributions, with the graphite sample being positively skewed (peak-dominated) and the grit-blasted surface being negatively skewed (valley-dominated). For both cases, numerical simulations were conducted at seven different Reynolds numbers, ranging from $Re_{\unicode[STIX]{x1D70F}}=90$ to $Re_{\unicode[STIX]{x1D70F}}=720$. The positively skewed surface gives rise to higher friction factors than the negatively skewed surface in all cases. For the highest Reynolds numbers, the flow has values of the roughness function $\unicode[STIX]{x0394}U^{+}$ well in excess of $7$ for both surfaces and the bulk flow profile has attained a constant shape across the full height of the channel except for the immediate vicinity of the roughness, which would indicate fully rough flow. However, the mean flow profile within and directly above the rough surface still shows considerable Reynolds-number dependence and the ratio of form to viscous drag continues to increase, which indicates that at least for some types of rough surfaces the flow retains aspects of the transitionally rough regime to values of $\unicode[STIX]{x0394}U^{+}$ or $k^{+}$ well in excess of the values conventionally assumed for the transitionally to fully rough threshold. This is also reflected in the changes that the near-wall flow undergoes as the Reynolds number increases: the viscous sublayer, within which the surface roughness is initially buried, breaks down and regions of reverse flow intensify. At the highest Reynolds numbers, a layer of near-wall flow is observed to follow the contours of the local surface. The distribution of thickness of this ‘blanketing’ layer has a mixed scaling, showing that viscous effects are still significant in the near-wall flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3