A universal three-dimensional instability of the wakes of two-dimensional bluff bodies

Author:

Rao Anirudh,Thompson Mark C.,Hourigan Kerry

Abstract

Linear stability analysis of a wide range of two-dimensional and axisymmetric bluff-body wakes shows that the first three-dimensional mode to became unstable is always mode E. From the studies presented in this paper, it is speculated to be the universal primary 3D instability, irrespective of the flow configuration. However, since it is a transition from a steady two-dimensional flow, whether this mode can be observed in practice does depend on the nature of the flow set-up. For example, the mode E transition of a circular cylinder wake occurs at a Reynolds number of $\mathit{Re}\simeq 96$, which is considerably higher than the steady to unsteady Hopf bifurcation at $\mathit{Re}\simeq 46$ leading to Bénard–von-Kármán shedding. On the other hand, if the absolute instability responsible for the latter transition is suppressed, by rotating the cylinder or moving it towards a wall, then mode E may become the first transition of the steady flow. A well-known example is flow over a backward-facing step, where this instability is the first global instability to be manifested on the otherwise two-dimensional steady flow. Many other examples are considered in this paper. Exploring this further, a structural stability analysis (Pralits et al.J. Fluid Mech., vol. 730, 2013, pp. 5–18) was conducted for the subset of flows past a rotating cylinder as the rotation rate was varied. For the non-rotating or slowly rotating case, this indicated that the growth rate of the instability mode was sensitive to forcing between the recirculation lobes, while for the rapidly rotating case, it confirmed sensitivity near the cylinder and towards the hyperbolic point. For the non-rotating case, the perturbation, adjoint and structural stability fields, together with the wavelength selection, show some similarities with those of a Crow instability of a counter-rotating vortex pair, at least within the recirculation zones. On the other hand, at much higher rotation rates, Pralits et al. (J. Fluid Mech., vol. 730, 2013, pp. 5–18) have suggested that hyperbolic instability may play a role. However, both instabilities lie on the same continuous solution branch in Reynolds number/rotation-rate parameter space. The results suggest that this particular flow transition at least, and probably others, may have a number of different physical mechanisms supporting their development.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3