Noise generation mechanisms for a supersonic jet impinging on an inclined plate

Author:

Brehm Christoph,Housman Jeffrey A.,Kiris Cetin C.

Abstract

Noise generation mechanisms for a perfectly expanded supersonic Mach number $M=1.8$ turbulent jet impinging on a $45^{\circ }$ inclined plate are investigated for a Reynolds number of $1.6\times 10^{6}$ employing a large-eddy simulation. Excellent comparisons with experimental acoustic far-field measurements and pressure measurements on the impingement plate are obtained. Two local maxima are identified in the far-field overall sound pressure levels in the $75^{\circ }$ and $120^{\circ }$ observer directions, which are associated with different noise generation mechanisms. The peak frequencies in the spectra with Strouhal numbers of $St=0.2$ for $75^{\circ }$ and $St=0.5$ for $120^{\circ }$ match the experimental measurements. The jet-impingement region generates pressure waves that propagate predominantly in the $120^{\circ }$ observer direction. The noise generation in this region is attributed to vortex stretching and tearing during shear-layer impingement, and shock oscillations that are induced by the motion of downstream convected vortical flow structures. The second peak in the overall sound pressure distribution at $75^{\circ }$ is associated with noise sources located in the wall jet. The noise generation in the wall jet is associated with supersonically convecting large-scale coherent flow structures that also interact with tail shocks in the wall jet causing large localized pressure fluctuations. Strongly coherent flow structures are identified by applying proper orthogonal decomposition (POD) to the unsteady flow field. The frequency characteristics of the most energetic POD modes are distinctly different based on which energy norm is chosen. The most energetic entropy-based POD modes contain a peak frequency of approximately $St=0.4{-}0.6$, while the most energetic turbulent kinetic-energy-based POD modes appear to be dominated by lower-frequency content. The causality method, based on Lighthill’s acoustic analogy, is used to link the acoustic noise signature to the relevant physical mechanisms in the source region. A differentiation is made between the application of normalized and non-normalized cross-correlation functions for noise source identification and characterization.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3