Analysis and characterisation of momentum and thermal wakes of elliptic cylinders

Author:

Paul I.,Arul Prakash K.,Vengadesan S.,Pulletikurthi V.

Abstract

Non-canonical wakes of two-dimensional elliptic cylinders are analysed numerically for their near- and far-wake characteristics. The governing equations are solved using an immersed boundary method based projection scheme. The wakes are then classified into three distinct types according to diverse flow and thermal properties. An unexpected mean temperature evolution along the centreline of the wake is observed for certain wake states. In order to explain this unusual variation, novel heat transport models are constructed based on the vortex dynamics. These models are derived by considering vorticity is acted by flow, which has shear and swirl. Mechanisms of the primary vortex street breakdown and formation of the secondary vortex street are also proposed based on these models. A new phenomenon namely ‘dual near-wall instantaneous recirculation’ is observed, and its appearance is found to be a function of length of the primary von Kármán vortex street. The same phenomenon is also found to be responsible for the secondary peak in the Nusselt number variation along the circumference of the cylinder. Despite varied differences between the wake types, it is observed that the transitions occur through a supercritical Hopf bifurcation in all of them, at least in the von Kármán region of the wake. Low-frequency unsteadiness observed in the far wakes is examined through a signal decomposition method. Our results show that the secondary low frequency is resulting from the transition region which has a negative instability slope. Finally, onset of the primary vortex street breakdown and its scale in terms of Reynolds number is computed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3