Vortex reconnection in the late transition in channel flow

Author:

Zhao Yaomin,Yang Yue,Chen Shiyi

Abstract

Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize, particularly in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the Klebanoff-type temporal transition in channel flow. The VSF evolution can capture the reconnection of the hairpin-like vortical structures evolving from the initial vortex sheets in opposite halves of the channel. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the wall and the VSF isoline of the channel half-height on the spanwise symmetric plane. We find that the surge of the wall-friction coefficient begins at the identified reconnection time. From the Biot–Savart law, the rapid reconnection of vortex lines can induce a velocity opposed to the mean flow, which partially blocks the flow near the central region and generally accelerates the near-wall fluid motion in the flow with constant mass flux. Therefore, the vortex reconnection appears to play an important role in the sudden increase of wall friction in transitional channel flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3