Axial interaction of a vortex ring with a cylinder

Author:

Das Debopam,Manghnani Akash,Bansal Mohit,Sohoni Prafulla

Abstract

In this paper, axial interaction of a vortex ring with a thin circular cylinder has been studied. An apparatus to generate clean vortex rings, free of piston and stopping vortex effects, has been used. Flow visualization and particle image velocimetry (PIV) experiments are carried out to determine and compare the characteristics of free and interacting vortex rings in the Reynolds number (defined with the circulation of the free travelling vortex ring) range of $2270<Re_{\unicode[STIX]{x1D6E4}}<6790$. It is observed that due to the presence of the cylinder, there is an increase in the velocity of the vortex ring. Also, noticeable changes in the characteristic properties of vortex ring such as core circulation, core diameter and ring diameter have been observed. Changes in these parameters are explained by two changes in the flow field between the vortex ring and the cylinder due to axial interactions: (i) displacement of the streamlines and (ii) acceleration in the induced velocity field in this region. These two mutually opposing effects determine the changes in the primary vortex ring properties that take place during interaction. To justify these experimental observations quantitatively, an analytical study of the interaction under an inviscid assumption is performed. The inviscid analysis does predict the increase in velocity during the interaction, but fails to predict the values observed in the present experiments. However, when the theory is used to correct the velocity change through incorporation of the effects of an axisymmetric induced boundary layer region over the cylinder, modelled as an annular vortex sheet of varying strength, the changes in the translational velocities of the vortex rings match closely with the experimental values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3