Linear modal instabilities of hypersonic flow over an elliptic cone

Author:

Paredes Pedro,Gosse Ryan,Theofilis Vassilis,Kimmel Roger

Abstract

Steady laminar flow over a rounded-tip $2\,:\,1$ elliptic cone of 0.86 m length at zero angle of attack and yaw has been computed at Mach number $7.45$ and unit Reynolds number $Re^{\prime }=1.015\times 10^{7}~\text{m}^{-1}$. The flow conditions are selected to match the planned flight of the Hypersonic Flight Research Experimentation HIFiRE-5 test geometry at an altitude of 21.8 km. Spatial linear BiGlobal modal instability analysis of this flow has been performed at selected streamwise locations on planes normal to the cone symmetry axis, resolving the entire flow domain in a coupled manner while exploiting flow symmetries. Four amplified classes of linear eigenmodes have been unravelled. The shear layer formed near the cone minor-axis centreline gives rise to amplified symmetric and antisymmetric centreline instability modes, classified as shear-layer instabilities. At the attachment line formed along the major axis of the cone, both symmetric and antisymmetric instabilities are also discovered and identified as boundary-layer second Mack modes. In both cases of centreline and attachment-line modes, symmetric instabilities are found to be more unstable than their antisymmetric counterparts. Furthermore, spatial BiGlobal analysis is used for the first time to resolve oblique second modes and cross-flow instabilities in the boundary layer between the major- and minor-axis meridians. Contrary to predictions for the incompressible regime for swept infinite wing flow, the cross-flow instabilities are not found to be linked to the attachment-line instabilities. In fact, cross-flow modes peak along most of the surface of the cone, but vanish towards the attachment line. On the other hand, the leading oblique second modes peak near the leading edge and their associated frequencies are in the range of the attachment-line instability frequencies. Consequently, the attachment-line instabilities are observed to be related to oblique second modes at the major-axis meridian. The linear amplification of centreline and attachment-line instability modes is found to be strong enough to lead to laminar–turbulent flow transition within the length of the test object. The predictions of global linear theory are compared with those of local instability analysis, also performed here under the assumption of locally parallel flow, where use of this assumption is permissible. Fair agreement is obtained for symmetric centreline and symmetric attachment-line modes, while for all other classes of linear disturbances use of the proposed global analysis methodology is warranted for accurate linear instability predictions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3