A local analysis of the axisymmetric Navier–Stokes flow near a saddle point and no-slip flat boundary

Author:

Hsu P.-Y.,Notsu H.,Yoneda T.

Abstract

Tornadoes are one type of violent flow phenomenon and occur in many places in the world. There are many research methods that aim to reduce the loss of human lives and material damage caused by tornadoes. One effective method is numerical simulation such as that in Ishihara et al. (J. Wind Engng Ind. Aerodyn., vol. 99, 2011, pp. 239–248). The swirling structure of the Navier–Stokes flow is significant for both the mathematical analysis and numerical simulations of tornadoes. In this paper, we try to clarify the swirling structure. More precisely, we performed numerical computations on axisymmetric Navier–Stokes flows with a no-slip flat boundary. We compared a hyperbolic flow with swirl and one without swirl, and observed that the following phenomenon occurs only in the swirl case: the distance between the point with the maximum magnitude of velocity $|\boldsymbol{v}|$ and the $z$-axis changed drastically at a specific time (which we call the turning point). Besides, an ‘increasing velocity phenomenon’ occurred near the boundary, and the maximum value of $|\boldsymbol{v}|$ was obtained near the axis of symmetry and the boundary when the time was close to the turning point in the swirl case.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Liouville theorems for the Navier–Stokes equations and applications

2. Uniqueness and smoothness of generalized solutions of Navier–Stokes equations;Ladyzhenskaya;Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),1967

3. Error Estimates of a Pressure-Stabilized Characteristics Finite Element Scheme for the Oseen Equations

4. Small scale creation for solutions of the incompressible two-dimensional Euler equation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3