A full, self-consistent treatment of thermal wind balance on oblate fluid planets

Author:

Galanti Eli,Kaspi Yohai,Tziperman Eli

Abstract

The nature of the flow below the cloud level on Jupiter and Saturn is still unknown. Relating the flow on these planets to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecrafts during 2016–2018. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Theories to date connecting the gravity field and the flow structure have been limited to potential theories under a barotropic assumption, or estimates based on thermal wind balance that allow baroclinic wind structures to be analysed, but have made simplifying assumptions that neglected several physical effects. These include the effects of the deviations from spherical symmetry, the centrifugal force due to density perturbations and self-gravitational effects of the density perturbations. Recent studies attempted to include some of these neglected terms, but lacked an overall approach that is able to include all effects in a self-consistent manner. The present study introduces such a self-consistent perturbation approach to the thermal wind balance that incorporates all physical effects, and applies it to several example wind structures, both barotropic and baroclinic. The contribution of each term is analysed, and the results are compared in the barotropic limit with those of potential theory. It is found that the dominant balance involves the original simplified thermal wind approach. This balance produces a good order-of-magnitude estimate of the gravitational moments, and is able, therefore, to address the order one question of how deep the flows are given measurements of gravitational moments. The additional terms are significantly smaller yet can affect the gravitational moments to some degree. However, none of these terms is dominant so any approximation attempting to improve over the simplified thermal wind approach needs to include all other terms.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3