On the interaction of two encapsulated bubbles in an ultrasound field

Author:

Liu Yunqiao,Sugiyama Kazuyasu,Takagi Shu

Abstract

We establish a theoretical model for the radial oscillations, translational motions and deformations of two interacting encapsulated bubbles. The flow field outside the bubbles is approximated by a potential flow with a viscous correction. The in-plane stresses and bending moments of the viscoelastic membranes are balanced by the hydrodynamic tractions at the interfaces of the bubbles. Since the material points move along the membranes accompanied by their movements in the radial direction when the encapsulated bubbles undergo deformations, stress balance in both the tangential and normal directions and the no-velocity-jump condition at the bubble surface are applied. The derived expression for the viscous drag includes the quasisteady drag force and the history force, which is validated by the solution of the unsteady Stokes equation. With an appropriate choice of the interface parameters, the present model is suitable for bubbles with free-slip, viscoelastic or no-slip interfaces. The viscous correction and the potential part of our solution are validated, respectively, by comparing them with previous experimental observations. The encapsulated bubble shows more stability in resisting shape oscillation. The attractive or repulsive movements of the two bubbles subjected to a driving frequency are consistent with the prediction by Bjerknes’ theory. For gas bubbles, the drag is mainly from the quasisteady component of the flow. For encapsulated bubbles, the no-velocity-jump condition enhances viscous dissipation, and thus contributes significantly to the history force in the viscous drag, generating more damping in the translational motion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3