Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor–Couette flow

Author:

Spandan Vamsi,Lohse Detlef,Verzicco Roberto

Abstract

The influence of the underlying flow topology on the shape and size of sub-Kolmogorov droplets dispersed in a turbulent flow is of considerable interest in many industrial and scientific applications. In this work we study the deformation and orientation statistics of sub-Kolmogorov droplets dispersed into a turbulent Taylor–Couette flow. Along with direct numerical simulations (DNS) of the carrier phase and Lagrangian tracking of the dispersed droplets, we solve a phenomenological equation proposed by Maffettone and Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241) to track the shape evolution and orientation of approximately $10^{5}$ ellipsoidal droplets. By varying the capillary number $Ca$ and viscosity ratio $\hat{\unicode[STIX]{x1D707}}$ of the droplets we find that they deform more with increasing capillary number $Ca$ and this effect is more pronounced in the boundary layer regions. This indicates that along with an expected capillary number effect there is also a strong correlation between spatial position and degree of deformation of the droplet. Regardless of the capillary number $Ca$, the major axis of the ellipsoids tends to align with the streamwise direction and the extensional strain rate eigendirection in the boundary layer region while the distribution is highly isotropic in the bulk due to the strong mixing provided by the large-scale vortical structures. When the viscosity ratio between the droplet and the carrier fluid is increased we find that there is no preferential stretched axis which is due to the increased influence of rotation over stretching and relaxation. Droplets in high viscosity ratio systems are thus less deformed and oblate (disk-like) as compared to highly deformed prolate (cigar-like) droplets in low viscosity ratio systems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3