Linear instability of low Reynolds number massively separated flow around three NACA airfoils

Author:

He W.ORCID,Gioria R. S.,Pérez J. M.,Theofilis V.ORCID

Abstract

Two- and three-dimensional modal and non-modal instability mechanisms of steady spanwise-homogeneous laminar separated flow over airfoil profiles, placed at large angles of attack against the oncoming flow, have been investigated using global linear stability theory. Three NACA profiles of distinct thickness and camber were considered in order to assess geometry effects on the laminar–turbulent transition paths discussed. At the conditions investigated, large-scale steady separation occurs, such that Tollmien–Schlichting and cross-flow mechanisms have not been considered. It has been found that the leading modal instability on all three airfoils is that associated with the Kelvin–Helmholtz mechanism, taking the form of the eigenmodes known from analysis of generic bluff bodies. The three-dimensional stationary eigenmode of the two-dimensional laminar separation bubble, associated in earlier analyses with the formation on the airfoil surface of large-scale separation patterns akin to stall cells, is shown to be more strongly damped than the Kelvin–Helmholtz mode at all conditions examined. Non-modal instability analysis reveals the potential of the flows considered to sustain transient growth which becomes stronger with increasing angle of attack and Reynolds number. Optimal initial conditions have been computed and found to be analogous to those on a cascade of low pressure turbine blades. By changing the time horizon of the analysis, these linear optimal initial conditions have been found to evolve into the Kelvin–Helmholtz mode. The time-periodic base flows ensuing linear amplification of the Kelvin–Helmholtz mode have been analysed via temporal Floquet theory. Two amplified modes have been discovered, having characteristic spanwise wavelengths of approximately 0.6 and 2 chord lengths, respectively. Unlike secondary instabilities on the circular cylinder, three-dimensional short-wavelength perturbations are the first to become linearly unstable on all airfoils. Long-wavelength perturbations are quasi-periodic, standing or travelling-wave perturbations that also become unstable as the Reynolds number is further increased. The dominant short-wavelength instability gives rise to spanwise periodic wall-shear patterns, akin to the separation cells encountered on airfoils at low angles of attack and the stall cells found in flight at conditions close to stall. Thickness and camber have quantitative but not qualitative effect on the secondary instability analysis results obtained.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference72 articles.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3