Non-equilibrium dynamics of dense gas under tight confinement

Author:

Wu Lei,Liu Haihu,Reese Jason M.,Zhang Yonghao

Abstract

The force-driven Poiseuille flow of dense gases between two parallel plates is investigated through the numerical solution of the generalized Enskog equation for two-dimensional hard discs. We focus on the competing effects of the mean free path ${\it\lambda}$, the channel width $L$ and the disc diameter ${\it\sigma}$. For elastic collisions between hard discs, the normalized mass flow rate in the hydrodynamic limit increases with $L/{\it\sigma}$ for a fixed Knudsen number (defined as $Kn={\it\lambda}/L$), but is always smaller than that predicted by the Boltzmann equation. Also, for a fixed $L/{\it\sigma}$, the mass flow rate in the hydrodynamic flow regime is not a monotonically decreasing function of $Kn$ but has a maximum when the solid fraction is approximately 0.3. Under ultra-tight confinement, the famous Knudsen minimum disappears, and the mass flow rate increases with $Kn$, and is larger than that predicted by the Boltzmann equation in the free-molecular flow regime; for a fixed $Kn$, the smaller $L/{\it\sigma}$ is, the larger the mass flow rate. In the transitional flow regime, however, the variation of the mass flow rate with $L/{\it\sigma}$ is not monotonic for a fixed $Kn$: the minimum mass flow rate occurs at $L/{\it\sigma}\approx 2{-}3$. For inelastic collisions, the energy dissipation between the hard discs always enhances the mass flow rate. Anomalous slip velocity is also found, which decreases with increasing Knudsen number. The mechanism for these exotic behaviours is analysed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3