Experiments on mixing in wakes in shallow water

Author:

Cafiero Gioacchino,Woods Andrew W.

Abstract

We report on a series of laboratory experiments in which we investigate the mixing in a wake produced downstream of an obstacle in a uniform flow. The fluid is confined within a channel of finite width, and the water depth is small compared with the channel width. The mixing appears to be dominated by dispersion caused by the circulation of the eddies that are shed alternately from each side of the obstacle. However, due to bottom friction, these eddies gradually dissipate downstream. In turn, the intensity of the cross-stream mixing of the tracer decays in the downstream direction, limiting the cross-stream extent of the tracer. We present a time-averaged picture of the experiments which illustrates the deviation of the time-averaged flow in the wake relative to the uniform flow upstream. We then develop a time-averaged model for the flow, using mixing length theory to account for the cross-channel momentum transfer as an eddy viscosity $\unicode[STIX]{x1D706}_{1}ud$, where $2ud$ is the cross-channel integral of the perturbation in the along-channel speed associated with the wake. We also include a frictional stress to account for the bottom friction. The model predicts a similar pattern of variation of the along-channel velocity in both the along- and cross-channel directions to our experimental data. By matching the cross-channel data with the model, we find that the constant $\unicode[STIX]{x1D706}_{1}$ has value 0.2. We also analyse our experimental data to develop a time-dependent picture of the mixing of a stream of dye released into the wake. Using the model for the evolution of the flow, we develop a model for the time-averaged mixing, again based on mixing length theory. The model predicts a similar spatial distribution for the tracer in both the cross-stream and along-stream directions to that seen in our experimental data. By quantitative comparison of the model with the data, we find that the best fit of the empirical eddy diffusivity, $\unicode[STIX]{x1D706}_{2}ud$, with the data occurs with $\unicode[STIX]{x1D706}_{2}=0.22$. We discuss implications of our results for modelling cross-stream mixing in shallow turbulent flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3