Heat/mass transport in shear flow over a reactive surface with inert defects

Author:

Shah Preyas N.ORCID,Lin Tiras Y.,Shaqfeh Eric S. G.

Abstract

We study the problem of mass transport to surfaces with heterogeneous reaction rates in the presence of shear flow over these surfaces. The reactions are first order and the heterogeneity is due to the existence of inert regions on the surfaces. Such problems are ubiquitous in the field of heterogeneous catalysis, electrochemistry and even biological mass transport. In these problems, the microscale reaction rate is characterized by a Damköhler number $\unicode[STIX]{x1D705}$, while the Péclet number $P$ is the dimensionless ratio of the bulk shear rate to the inverse diffusion time scale. The area fraction of the reactive region is denoted by $\unicode[STIX]{x1D719}$. The objective is to calculate the yield of reaction, which is directly related to the mass flux to the reactive region, denoted by the dimensionless Sherwood number $S$. Previously, we used boundary element simulations and examined the case of first-order reactive disks embedded in an inert surface (Shah & Shaqfeh J. Fluid Mech., vol. 782, 2015, pp. 260–299). Various correlations for the Sherwood number as a function of $(\unicode[STIX]{x1D705},P,\unicode[STIX]{x1D719})$ were obtained. In particular, we demonstrated that the ‘method of additive resistances’ provides a good approximation for the Sherwood number for a wide range of values of $(\unicode[STIX]{x1D705},P)$ for $0<\unicode[STIX]{x1D719}<0.78$. When $\unicode[STIX]{x1D719}\approx 0.78$, the reactive disks are in a close packed configuration where the inert regions are essentially disconnected from each other. In this work, we develop an understanding of the physics when $\unicode[STIX]{x1D719}>0.78$, by examining the inverse problem of inert disks on a reactive surface. We show that the method of resistances approach to obtain the Sherwood number fails in the limit as $\unicode[STIX]{x1D719}\rightarrow 1$, i.e. in the dilute limit of periodic inert disks, due to the existence of a surface concentration boundary layer around each disk that scales with ($1/\unicode[STIX]{x1D705}$). This boundary layer controls the screening length between inert disks and allows us to introduce a new theory, thus providing new correlations for the Sherwood number that are highly accurate in the limit of $\unicode[STIX]{x1D719}\rightarrow 1$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3