Insights into the dynamics of spray–swirl interactions

Author:

Rajamanickam Kuppuraj,Basu Saptarshi

Abstract

The near-field breakup and interaction of a hollow-cone liquid sheet with coannular swirling air flow have been examined using high-speed diagnostics. Time-resolved PIV (particle image velocimetry; $3500~\text{frames}~\text{s}^{-1}$) is employed to capture the spatio-temporal behaviour of the swirling air flow field. The combined liquid–gas phase interaction is visualized with the help of high-speed ($20\,000~\text{frames}~\text{s}^{-1}$) shadowgraphy. In this study, the transition from weak to strong spray–swirl interaction is explained based on the momentum ratio. Proper orthogonal decomposition (POD) is implemented on instantaneous PIV and shadowgraphy images to extract the energetic spatial eigenmodes and characteristic modal frequencies. The POD results suggest the dominance of the KH (Kelvin–Helmholtz) instability mechanism (pure axial shear, axial plus azimuthal shear) in swirl–spray interaction. In addition, linear stability analysis also shows the destabilization of the liquid–air interface caused by KH waves ($\unicode[STIX]{x1D706}_{p}$), which arises from the formation of a vorticity layer of thickness $\unicode[STIX]{x1D6FF}_{g}$ near the liquid–air interface. The frequency values obtained from the primary KH wavelength ($\unicode[STIX]{x1D706}_{p}$) exhibit good agreement with the POD modal frequencies. Scaling laws are proposed to elucidate the relationships between the global length scales (breakup length, spray spread) and the primary wavelength. The breakup length scale and liquid sheet oscillations are meticulously analysed in the time domain to reveal the breakup dynamics of the liquid sheet. Furthermore, the large-scale coherent structures of the swirl flow exhibit different sheet breakup phenomena in the spatial domain. For instance, flapping breakup is induced by the central toroidal recalculation zone in the swirling flow field. Finally, the ligament formation mechanism and its diameter, i.e. the size of first-generation droplets, are measured with phase Doppler interferometry. The measured sizes scale reasonably with KH waves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3