Author:
Liu Chen-Yu,Vandre Eric,Carvalho Marcio S.,Kumar Satish
Abstract
Dynamic wetting failure in curtain coating of Newtonian liquids is studied in this work. A hydrodynamic model accounting for air flow near the dynamic contact line (DCL) is developed to describe two-dimensional (2D) steady wetting and to predict the onset of wetting failure. A hybrid approach is used where air is described by a one-dimensional model and liquid by a 2D model, and the resulting hybrid formulation is solved with the Galerkin finite element method. The results reveal that the delay of wetting failure in curtain coating – often termed hydrodynamic assist – mainly arises from the hydrodynamic pressure generated by the inertia of the impinging curtain. This pressure leads to a strong capillary-stress gradient that pumps air away from the DCL and thus increases the critical substrate speed for wetting failure. Although the parameter values used in the model are different from those in experiments due to computational limitations, the model is able to capture the experimentally observed non-monotonic behaviour of the critical substrate speed as the feed flow rate increases (Blake et al., Phys. Fluids, vol. 11, 1999, p. 1995–2007). The influence of insoluble surfactants is also investigated, and the results show that Marangoni stresses tend to thin the air film and increase air-pressure gradients near the DCL, thereby promoting the onset of wetting failure. In addition, Marangoni stresses reduce the degree of hydrodynamic assist in curtain coating, suggesting a possible mechanism for experimental observations reported by Marston et al. (Exp. Fluids, vol. 46, 2009, pp. 549–558).
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献