On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions

Author:

Barnes C. J.,Visbal M. R.,Huang P. G.

Abstract

This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the streamwise vortex produces a spiralling instability in the vortex just upstream of the leading edge, reminiscent of the helical instability modes of a Batchelor vortex. A small negative vertical offset develops a more pronounced instability while a positive vertical offset removes the instability altogether. These differences in vertical position are a consequence of the upstream influence of pressure gradients provided by the wing. Direct impingement or a negative vertical offset subject the vortex to an adverse pressure gradient that leads to a reduced axial velocity and diminished swirl conducive to hydrodynamic instability. Conversely, a positive vertical offset removes instability by placing the streamwise vortex in line with a favourable pressure gradient, thereby enhancing swirl and inhibiting the growth of unstable modes. In every case, the helical instability only occurs when the properties of the incident vortex fall within the instability threshold predicted by linear stability theory. The influence of pressure gradients associated with separation and stall downstream also have the potential to introduce suction-side instabilities for a positive vertical offset. The influence of the wing is more severe for larger vortices and diminishes with vortex size due to weaker interaction and increased viscous stability. Helical instability is not the only possible outcome in a direct impingement. Jet-like vortices and a higher swirl ratio in wake-like vortices can retain stability upon impact, resulting in the laminar vortex splitting over either side of the wing.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3