Very large scale motions in the atmospheric surface layer: a field investigation

Author:

Wang Guohua,Zheng Xiaojing

Abstract

A field observation array for the atmospheric surface layer (ASL) was built on a dry flat bed of Qingtu Lake in Minqin (China) as the Qingtu Lake Observation Array (QLOA) site, which is similar to the Surface Layer Turbulence and Environmental Science Test (SLTEST) site in the Utah (USA) Western desert. The present observation array can synchronously perform multi-point measurements of wind velocity and temperature at different vertical and streamwise positions. In other words, three-dimensional turbulent ASL flows can be measured at the QLOA station and Reynolds numbers as high as $Re_{\unicode[STIX]{x1D70F}}\sim O(10^{6})$ can be achieved with steady wind conditions. By careful selection and pretreatment for measured data of more than 1200 h, the QLOA data have been validated to be reliable for high Reynolds number turbulent boundary layer research. Results from correlation and spectral analysis confirm that very large scale motions (VLSMs) exist in the ASL at a Reynolds number up to $Re_{\unicode[STIX]{x1D70F}}\approx 4\times 10^{6}$. Through premultiplied spectral analysis, it is revealed that the spectral energy in the high-wavenumber region decreases with height, similar to turbulent boundary layers at low or moderate Reynolds numbers, while it increases with height in the low-wavenumber region resulting in a log–linear increase of VLSMs energy with height, which is different from turbulent boundary layers at low or moderate Reynolds numbers. The present analyses support the view that the evolution of the VLSMs cannot be fully attributed to a ‘bottom-up’ mechanism alone, and probably other mechanisms, including a ‘top-down’ mechanism, also play a role.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3