Mode selection in trailing vortices: harmonic response of the non-parallel Batchelor vortex

Author:

Viola Francesco,Arratia Cristobal,Gallaire François

Abstract

In the present study, the response of model trailing vortices subjected to a harmonic forcing is studied. To this purpose, a globally stable non-parallel Batchelor vortex is considered as the baseflow. Direct numerical simulations (DNS) show that a large variety of helical responses can be excited and amplified through the domain when a harmonic inlet forcing is imposed. The spatial shape of the responses strongly depends on the forcing frequency, with the appearance of modes with progressively higher azimuthal wavenumber $m$ as the frequency increases. The mode-selection mechanism is shown to be directly connected to the local stability properties of the flow, and is simultaneously investigated by a WKB (Wentzel, Kramers, Brillouin) approximation in the framework of weakly non-parallel flows and by the global resolvent approach. In addition to the excellent agreement between the two (local and global) approaches for the computation of the linear response to harmonic forcing at the inlet, the usual WKB analysis is extended to a suitably chosen type of harmonic body forcing, showing also good agreement with the corresponding global results. As expected, the gain of the nonlinear response is significantly lower than that of the linear response, but the mode selection observed in the DNS as a function of the forcing frequency can be predicted fairly accurately by the linear analysis. Finally, by comparing the linear and nonlinear results in terms of energy content for different $m$, we suggest that the origin of the meandering observed in trailing-vortex experiments could be due to a nonlinear excitation stemming consistently at $m=1$ from the competition between the leading linear modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3