A squirmer across Reynolds numbers

Author:

Chisholm Nicholas G.,Legendre Dominique,Lauga Eric,Khair Aditya S.

Abstract

The self-propulsion of a spherical squirmer – a model swimming organism that achieves locomotion via steady tangential movement of its surface – is quantified across the transition from viscously to inertially dominated flow. Specifically, the flow around a squirmer is computed for Reynolds numbers ($Re$) between 0.01 and 1000 by numerical solution of the Navier–Stokes equations. A squirmer with a fixed swimming stroke and fixed swimming direction is considered. We find that fluid inertia leads to profound differences in the locomotion of pusher (propelled from the rear) versus puller (propelled from the front) squirmers. Specifically, pushers have a swimming speed that increases monotonically with $Re$, and efficient convection of vorticity past their surface leads to steady axisymmetric flow that remains stable up to at least $Re=1000$. In contrast, pullers have a swimming speed that is non-monotonic with $Re$. Moreover, they trap vorticity within their wake, which leads to flow instabilities that cause a decrease in the time-averaged swimming speed at large $Re$. The power expenditure and swimming efficiency are also computed. We show that pushers are more efficient at large $Re$, mainly because the flow around them can remain stable to much greater $Re$ than is the case for pullers. Interestingly, if unstable axisymmetric flows at large $Re$ are considered, pullers are more efficient due to the development of a Hill’s vortex-like wake structure.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrodynamic behavior of inertial elongated microswimmers in a horizontal channel;International Journal of Non-Linear Mechanics;2024-11

2. Swimming velocity of spherical squirmers in a square tube at finite fluid inertia;Applied Mathematics and Mechanics;2024-08-29

3. Modeling a spheroidal squirmer through a complex fluid;Physical Review Fluids;2024-07-23

4. Densitaxis: Active particle motion in density gradients;Proceedings of the National Academy of Sciences;2024-06-27

5. Hydrodynamic behavior of Janus particles in a finite inertial flow;Fluid Dynamics Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3