Global and local statistics in turbulent convection at low Prandtl numbers

Author:

Scheel Janet D.,Schumacher Jörg

Abstract

Statistical properties of turbulent Rayleigh–Bénard convection at low Prandtl numbers $Pr$, which are typical for liquid metals such as mercury or gallium ($Pr\simeq 0.021$) or liquid sodium ($Pr\simeq 0.005$), are investigated in high-resolution three-dimensional spectral element simulations in a closed cylindrical cell with an aspect ratio of one and are compared to previous turbulent convection simulations in air for $Pr=0.7$. We compare the scaling of global momentum and heat transfer. The scaling exponent $\unicode[STIX]{x1D6FD}$ of the power law $Nu=\unicode[STIX]{x1D6FC}Ra^{\unicode[STIX]{x1D6FD}}$ is $\unicode[STIX]{x1D6FD}=0.265\pm 0.01$ for $Pr=0.005$ and $\unicode[STIX]{x1D6FD}=0.26\pm 0.01$ for $Pr=0.021$, which are smaller than that for convection in air ($Pr=0.7$, $\unicode[STIX]{x1D6FD}=0.29\pm 0.01$). These exponents are in agreement with experiments. Mean profiles of the root-mean-square velocity as well as the thermal and kinetic energy dissipation rates have growing amplitudes with decreasing Prandtl number, which underlies a more vigorous bulk turbulence in the low-$Pr$ regime. The skin-friction coefficient displays a Reynolds number dependence that is close to that of an isothermal, intermittently turbulent velocity boundary layer. The thermal boundary layer thicknesses are larger as $Pr$ decreases and conversely the velocity boundary layer thicknesses become smaller. We investigate the scaling exponents and find a slight decrease in exponent magnitude for the thermal boundary layer thickness as $Pr$ decreases, but find the opposite case for the velocity boundary layer thickness scaling. A growing area fraction of turbulent patches close to the heating and cooling plates can be detected by exceeding a locally defined shear Reynolds number threshold. This area fraction is larger for lower $Pr$ at the same $Ra$, but the scaling exponent of its growth with Rayleigh number is reduced. Our analysis of the kurtosis of the locally defined shear Reynolds number demonstrates that the intermittency in the boundary layer is significantly increased for the lower Prandtl number and for sufficiently high Rayleigh number compared to convection in air. This complements our previous findings of enhanced bulk intermittency in low-Prandtl-number convection.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3