Author:
Marth Wieland,Aland Sebastian,Voigt Axel
Abstract
We numerically investigate margination of white blood cells and demonstrate the dependency on a number of conditions including haematocrit, the deformability of the cells and the Reynolds number. The approach, which is based on a mesoscopic hydrodynamic Helfrich-type model, reproduces previous results, e.g. a decreasing tendency for margination with increasing deformability and a non-monotonic dependency on haematocrit. The consideration of inertia effects, which may be of relevance in various parts of the cardiovascular system, indicates a decreasing tendency for margination with increasing Reynolds number. The effect is discussed by analysing inertial and non-inertial lift forces for single cells under different flow conditions and large-scale two-dimensional simulations of interacting red blood cells and white blood cells in an idealized blood vessel.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献