Abstract
Theory and numerical simulations show that the nonlinear self-interaction of internal modes in non-uniform stratification results in energy being transferred to superharmonic disturbances forced at twice the horizontal wavenumber and frequency of the parent mode. These disturbances are not in themselves a single mode, but a superposition of modes such that the disturbance amplitude is largest where the change in the background buoyancy frequency with depth is largest. Through weakly nonlinear interactions with the parent mode, the disturbances evolve to develop vertical-scale structures that distort and modulate the parent mode. Because pure resonant wave triads do not exist in non-uniformly stratified fluid, parametric subharmonic instability (PSI) is not evident even though noise is superimposed upon the initial state. The results suggest a new mechanism for energy transfer to dissipative scales (from large to small vertical scale and with frequencies larger and smaller than that of the parent mode) through forcing superharmonic rather than subharmonic disturbances.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献