Interaction forces between microfluidic droplets in a Hele-Shaw cell

Author:

Sarig I.,Starosvetsky Y.,Gat A. D.

Abstract

Various microfluidic systems, such as chemical and biological lab-on-a-chip devices, involve motion of multiple droplets within an immersing fluid in shallow microchannels. Modelling the dynamics of such systems requires calculation of the forces of interaction between the moving droplets. These forces are commonly approximated by superposition of dipole solutions, which requires an assumption of sufficiently large distance between the droplets. In this work we obtain exact solutions (in the Hele-Shaw limit) for two moving droplets, and a droplet within a droplet, located within a moving immersing fluid, without limitation on the distance between the droplets. This is achieved by solution of the pressure field in a bipolar coordinate system and calculation of the force in Cartesian coordinates. Our results are compared with numerical computations, experimental data and the existing dipole-based models. We utilize the results to calculate the dynamics of a droplet within a droplet, and of two close droplets, located within an immersing fluid with oscillating speed. Overall, the obtained results establish the solid base for the rather important future extensions for modelling the complex, long-range interdroplet interactions in the limit of dense droplet media.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3