Generation and characteristics of vortex rings free of piston vortex and stopping vortex effects

Author:

Das Debopam,Bansal M.,Manghnani A.

Abstract

This paper presents a novel method for generating vortex rings that circumvents some of the drawbacks associated with existing methods in producing them. The predominant effects that occur in previously used methods are due to the presence of some of the other vortices such as the stopping vortex, piston vortex, image vortex and orifice lip generated vortices in the early stage of development. These disturbances influence the geometric, kinematic and dynamic characteristics of a vortex ring and lead to mismatches with classical theoretical predictions. It is shown in the present study that the disturbance free vortex rings produced follow the classical theory. Flow visualization and particle image velocimetry experiments are carried out in the Reynolds number (defined as the ratio of circulation ($\unicode[STIX]{x1D6E4}$) and kinematic viscosity ($\unicode[STIX]{x1D708}$)) range, $2270<Re_{\unicode[STIX]{x1D6E4}}<6790$, to find the translational velocity, total and core circulation, core diameter, ring diameter and bubble diameter. In reference to the earlier studies, significant differences are noted in the variations of the vortex ring diameter and core diameter. A model for the core diameter during the formation stage is proposed. The translational velocity variation with time shows that the second-order accurate formula derived using Hamilton’s equation by Fraenkel (J. Fluid Mech., vol. 51, 1972, pp. 119–135) predicts it best.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3