Flow generated by oscillatory uniform heating of a rarefied gas in a channel

Author:

Nassios Jason,Yap Ying Wan,Sader John E.

Abstract

Kinetic theory provides a rigorous foundation to explore the unsteady (oscillatory) flow of a dilute gas, which is often generated by nanomechanical devices. Recently, formal asymptotic analyses of unsteady (oscillatory) flows at small Knudsen numbers have been derived from the linearised Boltzmann–Bhatnagar–Gross–Krook (Boltzmann–BGK) equation, in both the low- and high-frequency limits (Nassios & Sader, J. Fluid Mech., vol. 708, 2012, pp. 197–249 and vol. 729, 2013, pp. 1–46; Takata & Hattori, J. Stat. Phys., vol. 147, 2012, pp. 1182–1215). These asymptotic theories predict that unsteadiness can couple strongly with heat transport to dramatically modify the overall gas flow. Here, we study the gas flow generated between two parallel plane walls whose temperatures vary sinusoidally in time. Predictions of the asymptotic theories are compared to direct numerical solutions, which are valid for all Knudsen numbers and normalised frequencies. Excellent agreement is observed, providing the first numerical validation of the asymptotic theories. The asymptotic analyses also provide critical insight into the physical mechanisms underlying these flow phenomena, establishing that mass conservation (not momentum or energy) drives the flows – this explains the identical results obtained using different previous theoretical treatments of these linear thermal flows. This study highlights the unique gas flows that can be generated under oscillatory non-isothermal conditions and the importance of both numerical and asymptotic analyses in explaining the underlying mechanisms.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3