Abstract
A small-amplitude sinusoidal surface undulation on the lower wall of Couette flow induces a vorticity perturbation. Using linear analysis, this vorticity field is examined when the fluid is viscoelastic and contrasted to the Newtonian configuration. For strongly elastic Oldroyd-B fluids, the penetration of induced vorticity into the bulk can be classified using two dimensionless quantities: the ratios of (i) the channel depth and of (ii) the shear-waves’ critical layer depth to the wavelength of the surface roughness. In the shallow-elastic regime, where the roughness wavelength is larger than the channel depth and the critical layer is outside of the domain, the bulk flow response is a distortion of the tensioned streamlines to match the surface topography, and a constant perturbation vorticity fills the channel. This vorticity is significantly amplified in a thin solvent boundary layer at the upper wall. In the deep-elastic case, the critical layer is far from the wall and the perturbation vorticity decays exponentially with height. In the third, transcritical regime, the critical layer height is within a wavelength of the lower wall and a kinematic amplification mechanism generates vorticity in its vicinity. The analysis is extended to localized, Gaussian wall bumps using Fourier synthesis. The Newtonian flow response consists of a single vortex above the bump. In the shallow-elastic flow, a second vortex with opposite circulation is established upstream of the surface protrusion and is induced by the vorticity layer on the upper wall. In the deep transcritical case, the perturbation field consists of a pair of counter-rotating vortices centred on the large vorticity around the critical layer. The more realistic FENE-P model, which accounts for the finite extensibility of the polymer chains, shows the same qualitative behaviour.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献