Author:
He Guo-Sheng,Pan Chong,Feng Li-Hao,Gao Qi,Wang Jin-Jun
Abstract
Evolution of Lagrangian coherent structures (LCS) in a flat plate boundary layer transition induced by the wake of a circular cylinder is investigated. Both hydrogen bubble visualization and particle image velocimetry (PIV) techniques are used. It is found that downstream of the cylinder, the disturbance in the boundary layer experiences a fast growth followed by a slow decay in the transition. Lagrangian coherent structures are revealed by qualitative hydrogen bubble visualizations and quantitative finite-time Lyapunov exponents (FTLE) fields derived from the PIV data. The evolution of the LCS is considered from the very beginning of the transition up to when the boundary layer becomes fully developed turbulent flow. The mean convection velocity and average inclination angle of the LCS are first extracted from the FTLE fields. The streamwise length of the low-speed streaks seems to increase, while their spanwise distance decreases in the boundary layer transition. Proper orthogonal decomposition (POD) of the PIV data shows that low-speed streaks associated with the hairpin vortices and hairpin packets are the dominant coherent structures close to the wall in the transitional and turbulent boundary layer. The POD modes also reveal a variety of scales in the turbulent boundary layer. Moreover, it is found that large-scale coherent structures can modulate the amplitude of the small-scale ones.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献