Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach

Author:

Spandan Vamsi,Ostilla-Mónico Rodolfo,Verzicco Roberto,Lohse Detlef

Abstract

Two-phase turbulent Taylor–Couette (TC) flow is simulated using an Euler–Lagrange approach to study the effects of a secondary phase dispersed into a turbulent carrier phase (here bubbles dispersed into water). The dynamics of the carrier phase is computed using direct numerical simulations (DNS) in an Eulerian framework, while the bubbles are tracked in a Lagrangian manner by modelling the effective drag, lift, added mass and buoyancy force acting on them. Two-way coupling is implemented between the dispersed phase and the carrier phase which allows for momentum exchange among both phases and to study the effect of the dispersed phase on the carrier phase dynamics. The radius ratio of the TC setup is fixed to ${\it\eta}=0.833$, and a maximum inner cylinder Reynolds number of $Re_{i}=8000$ is reached. We vary the Froude number ($Fr$), which is the ratio of the centripetal to the gravitational acceleration of the dispersed phase and study its effect on the net torque required to drive the TC system. For the two-phase TC system, we observe drag reduction, i.e. the torque required to drive the inner cylinder is lower compared with that of the single-phase system. The net drag reduction decreases with increasing Reynolds number $Re_{i}$, which is consistent with previous experimental findings (Murai et al., J. Phys.: Conf. Ser., vol. 14, 2005, pp. 143–156; Phys. Fluids, vol. 20(3), 2008, 034101). The drag reduction is strongly related to the Froude number: for fixed Reynolds number we observe higher drag reduction when $Fr<1$ than for with $Fr>1$. This buoyancy effect is more prominent in low $Re_{i}$ systems and decreases with increasing Reynolds number $Re_{i}$. We trace the drag reduction back to the weakening of the angular momentum carrying Taylor rolls by the rising bubbles. We also investigate how the motion of the dispersed phase depends on $Re_{i}$ and $Fr$, by studying the individual trajectories and mean dispersion of bubbles in the radial and axial directions. Indeed, the less buoyant bubbles (large $Fr$) tend to get trapped by the Taylor rolls, while the more buoyant bubbles (small $Fr$) rise through and weaken them.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3