Current generation by deep-water breaking waves

Author:

Pizzo N. E.,Deike Luc,Melville W. Kendall

Abstract

We examine the partitioning of the energy transferred to the water column by deep-water wave breaking; in this case between the turbulent and mean flow. It is found that more than 95 % of the energy lost by the wave field is dissipated in the first four wave periods after the breaking event. The remaining energy is in the coherent vortex generated by breaking. A scaling argument shows that the ratio between the energy in this breaking generated mean current and the total energy lost from the wave field to the water column due to breaking scales as $(hk)^{1/2}$, where $hk$ is the local slope at breaking. This model is examined using direct numerical simulations of breaking waves solving the full two-phase air–water Navier–Stokes equations, as well as the limited available laboratory data, and good agreement is found for strong breaking waves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3