An analytical theory for the capillary bridge force between spheres

Author:

Kruyt N. P.,Millet O.

Abstract

An analytical theory has been developed for properties of a steady, axisymmetric liquid–gas capillary bridge that is present between two identical, perfectly wettable, rigid spheres. In this theory the meridional profile of the capillary bridge surface is represented by a part of an ellipse. Parameters in this geometrical description are determined from the boundary conditions at the three-phase contact circle at the sphere and at the neck (i.e. in the middle between the two spheres) and by the condition that the mean curvature be equal at the three-phase contact circle and at the neck. Thus, the current theory takes into account properties of the governing Young–Laplace equation, contrary to the often-used toroidal approximation. Expressions have been developed analytically that give the geometrical parameters of the elliptical meridional profile as a function of the capillary bridge volume and the separation between the spheres. A rupture criterion has been obtained analytically that provides the maximum separation between the spheres as a function of the capillary bridge volume. This rupture criterion agrees well with a rupture criterion from the literature that is based on many numerical solutions of the Young–Laplace equation. An expression has been formulated analytically for the capillary force as a function of the capillary bridge volume and the separation between the spheres. The theoretical predictions for the capillary force agree well with the capillary forces obtained from the numerical solutions of the Young–Laplace equation and with those according to a comprehensive fit from the literature (that is based on many numerical solutions of the Young–Laplace equation), especially for smaller capillary bridge volumes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3