Inertial regimes in a curved electromagnetically forced flow

Author:

Boisson J.,Monchaux R.,Aumaître S.

Abstract

We investigated experimentally the flow driven by a Lorentz force induced by an axial magnetic field $\boldsymbol{B}$ and a radial electric current $I$ applied between two fixed concentric copper cylinders. The gap geometry corresponds to a rectangular section with an aspect ratio of $\unicode[STIX]{x1D702}=4$ and we probe the azimuthal and axial velocity profiles of the flow along the vertical axis by using ultrasonic Doppler velocimetry. We have performed several runs at moderate magnetic field strengths, corresponding to moderate Hartmann numbers $M\leqslant 300$. At these forcing parameters and because of the geometry of our experimental device, we show that the inertial terms are not negligible and an azimuthal velocity that depends on both $I$ and $B$ is induced. From measurements of the vertical velocity we focus on the characteristics of the secondary flow: the time-averaged velocity profiles are compatible with a secondary flow presenting two pairs of stable vortices, as pointed out by previous numerical studies. The flow exhibited a transition between two dynamical modes, a high- and a low-frequency one. The high-frequency mode, which emerges at low magnetic field forcing, corresponds to the propagation in the radial $r$-direction of tilted vortices. This mode is consistent with our previous experiments and with the instability described in Zhao et al. (Phys. Fluids, vol. 23 (8), 2011, 084103) taking place in an elongated duct geometry. The low-frequency mode, observed for high magnetic field forcing, consists of large excursions of the vortices. The dynamics of these modes matches the first axisymmetric instability described in Zhao & Zikanov (J. Fluid Mech., vol. 692, 2012, pp. 288–316) taking place in an square duct geometry. We demonstrated that this transition is controlled by the inertial magnetic thickness $H^{\prime }$ which is the characteristic length we introduce as a balance between the advection and the Lorentz force. The key point here is that when the inertial magnetic thickness $H^{\prime }$ is comparable to one geometric characteristic length ($H/2$ in the vertical or $\unicode[STIX]{x0394}r$ in the radial direction) the corresponding mode is favoured. Therefore, when $H^{\prime }/(H/2)\approx 1$ we observe the high-frequency mode taking place in an elongated duct geometry, and when $H^{\prime }/\unicode[STIX]{x0394}r\approx 1$ we observe the low-frequency mode taking place in square duct geometry and high magnetic field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3