Abstract
An upper bound on the energy dissipation rate per unit mass, $\unicode[STIX]{x1D700}$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound – $\unicode[STIX]{x1D700}\leqslant cU^{3}/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor – is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier–Stokes equations (data suggest $\unicode[STIX]{x1D700}\sim 1/(\log Re)^{2}U^{3}/h$ as $Re\rightarrow \infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across bottom topography in the oceans.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference40 articles.
1. The heat transport and spectrum of thermal turbulence
2. Remark on the energy dissipation in shear driven turbulence;Marchioro;Physica D,1994
3. Heat transport by turbulent convection
4. Bounds for convection between rough boundaries
5. Improved variational principle for bounds on energy dissipation in turbulent shear flow;Nicodemus;Physica D,1997
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献