More Rapid 14C Excursions in the Tree-Ring Record: A Record of Different Kind of Solar Activity at About 800 BC?

Author:

Jull A J TimothyORCID,Panyushkina Irina,Miyake Fusa,Masuda Kimiaki,Nakamura Toshio,Mitsutani Takumi,Lange Todd E,Cruz Richard J,Baisan Chris,Janovics Robert,Varga TamasORCID,Molnár Mihály

Abstract

ABSTRACTTwo radiocarbon (14C) excursions are caused by an increase of incoming cosmic rays on a short time scale found in the Late Holocene (AD 774–775 and AD 993–994), which are widely explained as due to extreme solar proton events (SPE). In addition, a larger event has also been reported at 5480 BC (Miyake et al. 2017a), which is attributed to a special mode of a grand solar minimum, as well as another at 660 BC (Park et al. 2017). Clearly, other events must exist, but could have different causes. In order to detect more such possible events, we have identified periods when the 14C increase rate is rapid and large in the international radiocarbon calibration (IntCal) data (Reimer et al. 2013). In this paper, we follow on from previous studies and identify a possible excursion starting at 814–813 BC, which may be connected to the beginning of a grand solar minimum associated with the beginning of the Hallstatt period, which is characterized by relatively constant 14C ages in the period from 800–400 BC. We compare results of annual 14C measurements from tree rings of sequoia (California) and cedar (Japan), and compare these results to other identified excursions, as well as geomagnetic data. We note that the structure of the increase from 813 BC is similar to the increase at 5480 BC, suggesting a related origin. We also assess whether there are different kinds of events that may be observed and may be consistent with different types of solar phenomena, or other explanations.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3