Absorption, Translocation, and Metabolism of14C-Halosulfuron in Grafted Eggplant and Tomato

Author:

Chaudhari Sushila,Jennings Katherine M.,Monks David W.,Jordan David L.,Gunter Christopher C.,Louws Frank J.

Abstract

Grafted plants are a combination of two different interspecific or intraspecific scion and rootstock. Determination of herbicidal selectivity of the grafted plant is critical given their increased use in vegetable production. Differential absorption, translocation, and metabolism play an important role in herbicide selectivity of plant species because these processes affect the herbicide amount delivered to the site of action. Therefore, experiments were conducted to determine absorption, translocation, and metabolism of halosulfuron in grafted and non-grafted tomato and eggplant. Transplant type included non-grafted tomato cultivar Amelia, non-grafted eggplant cultivar Santana, Amelia scion grafted onto Maxifort tomato rootstock (A-Maxifort) and Santana scion grafted onto Maxifort rootstock (S-Maxifort). Plants were treated POST with commercially formulated halosulfuron at 39 g ai ha-1followed by14C-halosulfuron under controlled laboratory conditions. Amount of14C-halosufuron was quantified in leaf wash, treated leaf, scion shoot, rootstock shoot, and root at 6, 12, 24, 48, and 96 h after treatment (HAT) using liquid scintillation spectrometry. No differences were observed between transplant types with regard to absorption and translocation of14C-halosulfuron. Absorption of14C-halosulfuron increased with time, reaching 10 and 74% of applied at 6 and 96 HAT, respectively. Translocation of14C-halosulfuron was limited to the treated leaf, which reached maximum (66% of applied) at 96 HAT, whereas minimal (<4% of applied) translocation occurred in scion shoot, rootstock shoot, and root. Tomato plants metabolized halosulfuron faster compared to eggplant regardless of grafting. Of the total amount of14C-halosulfuron absorbed into the plant, 9 to 14% remained in the form of the parent compound in tomato compared with 25 to 26% in eggplant at 48 HAT. These results indicate that grafting did not affect absorption, translocation, and metabolism of POST halosulfuron in tomato and eggplant.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3