Evaluating the stretching/compression effect of Richtmyer–Meshkov instability in convergent geometries

Author:

Ge JinORCID,Li HaifengORCID,Zhang Xinting,Tian Baolin

Abstract

Richtmyer–Meshkov (RM) instability in convergent geometries (such as cylinders and spheres) plays a fundamental role in natural phenomena and engineering applications, e.g. supernova explosion and inertial confinement fusion. Convergent geometry refers to a system in which the interface converges and the fluids are compressed correspondingly. By applying a decomposition formula, the stretching or compression (S(C)) effect is separated from the perturbation growth as one of the main contributions, which is defined as the averaged velocity difference between two ends of the mixing zone. Starting from linear theories, the S(C) effect in planar, cylindrical and spherical geometries is derived as a function of geometrical convergence ratio, compression ratio and mixing width. Specifically, geometrical convergence stretches the mixing zone, while fluid compression compresses the mixing zone. Moreover, the contribution of geometrical convergence in the spherical geometry is more important than that in the cylindrical geometry. A series of cylindrical cases with high convergence ratio is simulated, and the growth of perturbations is compared with that of the corresponding planar cases. As a result, the theoretical results of the S(C) effect agree well with the numerical results. Furthermore, results show that the S(C) effect is a significant feature in convergent geometries. Therefore, the S(C) effect is an important part of the Bell–Plesset effect. The present work on the S(C) effect is important for further modelling of the mixing width of convergent RM instabilities.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3