Abstract
A straight cylindrical duct is considered containing an axial mean flow that is uniform everywhere except within a boundary layer near the wall, which need not be thin. Within this boundary layer the mean flow varies parabolically. The linearized Euler equations are Fourier transformed to give the Pridmore-Brown equation, for which the Green's function is constructed using Frobenius series. The critical layer gives a non-modal contribution from the continuous spectrum branch cut, and dominates the downstream pressure perturbation in certain cases, particularly for thicker boundary layers. The continuous spectrum branch cut is also found to stabilize what are otherwise convectively unstable modes by hiding them behind the branch cut. Overall, the contribution from the critical layer is found to give a neutrally stable non-modal wave when the source is located within the sheared flow region, and to decay algebraically along the duct as
$O(x^{-{5}/{2}})$
for a source located with the uniform flow region. The Frobenius expansion, in addition to being numerically accurate close to the critical layer where other numerical methods lose accuracy, is also able to locate modal poles hidden behind the branch cut, which other methods are unable to find; this includes the stabilized hydrodynamic instability. Matlab code is provided to compute the Green's function.
Funder
Royal Society
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献