An investigation of rotor aeroacoustics with unsteady motions and uncertainty factors

Author:

Zhong SiyangORCID,Zhou PengORCID,Chen Wangqiao,Jiang HanboORCID,Wu HanORCID,Zhang Xin

Abstract

The aeroacoustic characteristics of flying vehicles with pitch-fixed rotors differ from traditional helicopters with pitch-controlled rotor blades. Accurate predictions of rotor noise are still challenging because many uncertainty factors and unsteadinesses exist. This work investigates the aeroacoustic effects of rotational speed deviation, rotation speed fluctuation, blade vibration and blade geometric asymmetry. The analysis is based on the efficient computation of rotor noise under different working conditions. The mean aerodynamic variables are computed using the blade element moment theory, while small-amplitude fluctuations are introduced to account for the unsteadiness and uncertainty factors. It is shown that periodic rotation speed fluctuations and blade vibrations can produce significant extra tones. By contrast, if the fluctuations and vibrations are random, the noise level in a wide frequency range is increased. The intriguing result reminds us of the need to revisit the rotor broadband noise sources commonly attributed to turbulent flows. The influences are observer angle dependent, and the extra noise production is more significant in the upstream and downstream directions. The asymmetric blade geometry can cause extra tonal noise at the harmonics of the blade shaft frequency. The noise features of dual rotors are also investigated. Usually, the noise is sensitive to the initial phase difference and rotation directions due to the interference effect. However, the noise features are vastly altered if there are slight differences in the rotation speeds. Although the influences of some factors on rotor noise were already known, the present study provides a more comprehensive analysis of the problem. The results also highlight the need to consider these practical factors for accurate noise prediction of multi-rotor flying vehicles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference95 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3