Scale-dependent particle clustering in transitional wake flow

Author:

Shi ZhaoyuORCID,Jiang FengjianORCID,Zhao Lihao,Andersson Helge I.

Abstract

Dispersion and mixing of inertial point particles in the unsteady and three-dimensional wake of a circular cylinder at $Re=200$ are investigated via one-way coupled simulations. The presence of streamwise-oriented vortical braids originating from the mode A instability in the transition regime has a profound impact on the particle dynamics and preferential concentration in the near wake. Particles trapped between the Kármán rollers and the streamwise braids form an inner layer of densely concentrated particles, while discrete particle clumps on the otherwise thin ribbon-like clusters between two consecutive Kármán rollers are another manifestation of the streamwise braids. The effect of particle inertia on the size of clusters and voids ascribed to centrifugal ejection is examined by volume-averaged Voronoï analysis. A distinct dependence on Stokes number ( $Sk$ ) is seen at the cluster scale, whereas the void scale exhibits self-similarity. New physics-based threshold values of clusters and voids are distinctly different from the probability-distribution-based threshold at cluster scale. Increasing inertia is found to suppress particle acceleration more than deceleration. The particle velocity is further suppressed by the presence of the streamwise vortical braids. The effects of particle inertia vary non-monotonically in $Sk$ with the strongest effect at $Sk=1$ when most particles tend to reside in high-strain/low-vorticity regions.

Funder

Norges Forskningsråd

Norges Teknisk-Naturvitenskapelige Universitet

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3