The double backward-facing step: interaction of multiple separated flow regions

Author:

McQueen ThomasORCID,Burton DavidORCID,Sheridan JohnORCID,Thompson Mark C.ORCID

Abstract

The backward-facing step is perhaps the quintessential geometry used to study separated flow. Extensive previous research has quantified its detailed flow characteristics. However, often regions of separated flow do not exist in isolation; rather, interaction occurs between multiple regions. This motivated an experimental investigation into the time-averaged and dynamic flow features of a double backward-facing step, covering separations of zero to eight step heights between equal-height steps. Three flow regimes are identified. A single reattachment regime occurs for separations of less than four step heights, perhaps remarkable for the lack of variation in key flow characteristics from a single backward-facing step response. Next, an intermediate regime is identified for a separation of four step heights. In this case, the flow does not yet reattach on the first step, although significant differences in reattachment length, surface pressure on the vertical step faces and turbulence statistics occur. Finally, for greater step separations, a double reattachment regime, with reattachment on both steps, is identified. Downwash, induced by the first recirculation zone, reduces the reattachment length and turbulent fluctuations of the second recirculation zone. The surface pressure on the first-step vertical face is reduced, seemingly a result of an upstream influence due to the low pressure in the second-step recirculation zone. Detailed characterisation of the regimes offers insight into the fundamental interaction of regions of separated flow, revealing aspects of complex dynamics relevant to a broad range of practical scenarios.

Funder

Australian Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3