Vortex merging and splitting events in viscoelastic Taylor–Couette flow

Author:

Lopez Jose M.ORCID

Abstract

Recent experiments have reported a novel transition to elasto-inertial turbulence in the Taylor–Couette flow of a dilute polymer solution. Unlike previously reported transitions, this newly discovered scenario, dubbed vortex merging and splitting (VMS) transition, occurs in the centrifugally unstable regime and the mechanisms underlying it are two-dimensional: the flow becomes chaotic due to the proliferation of events where axisymmetric vortex pairs may be either created (vortex splitting) or annihilated (vortex merging). In this paper, we present direct numerical simulations, using the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive equation to model the polymer dynamics, which reproduce the experimental observations with great accuracy and elucidate the reasons for the onset of this surprising dynamics. Starting from the Newtonian limit and increasing progressively the fluid's elasticity, we demonstrate that the VMS dynamics is not associated with the well-known Taylor vortices, but with a steady pattern of elastically induced axisymmetric vortex pairs known as diwhirls. The amount of angular momentum carried by these elastic vortices becomes increasingly small as the fluid's elasticity increases and it eventually reaches a marginal level. When this occurs, the diwhirls become dynamically disconnected from the rest of the system and move independently from each other in the axial direction. It is shown that vortex merging and splitting events, along with local transient chaotic dynamics, result from the interactions among diwhirls, and that this complex spatio-temporal dynamics persists even at elasticity levels twice as large as those investigated experimentally.

Funder

Ministerio de Ciencia e Innovación

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maximum drag enhancement asymptote in turbulent Taylor–Couette flow of dilute polymeric solutions;Journal of Non-Newtonian Fluid Mechanics;2024-01

2. Spatiotemporal signatures of elastoinertial turbulence in viscoelastic planar jets;Physical Review Fluids;2023-06-20

3. Large-eddy simulation of Taylor–Couette flow in multiwedge clearance with microscale gap;International Journal of Heat and Fluid Flow;2023-06

4. Arrow-shaped elasto-inertial rotating waves;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

5. Friction dynamics of elasto-inertial turbulence in Taylor–Couette flow of viscoelastic fluids;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3